

HURRICANES AND CARIBBEAN CORAL REFES: IMPACTS RECOVERY

PATTERNS, AND ROI

TOBY A. GARDNER, 1.2 ISABELLE M. C

AND ANDR

Coral Chris T. Perry¹, G

(a) The two benthic functional groups commonly used to evaluate reef health: hard coral and macroalgae.

© 2016 The Author(s)

Fig. 5. Coral percent cover at impacted nonimpacted (open circles) sites across the from 1980 to 2001. Means (with 95% bedence intervals) for each year are shown for clarity. N = 1 for 1980 and 1981.

©2012 by National Academy of Sciences

hard coral macroalgae

Jennifer E. Smith et al. Proc. R. Soc. B 2016;283:20151985

THE ROYAL SOCIETY

June 2014 - May 2017 Thermal Stress

- Longest global bleaching event ever
- Most widespread bleaching event ever
- Over ½ exposed twice (Guam 4 of 5 years)
- >75% suffered bleaching-level heat stress
- Probably most damaging on record

Coral diseases

Bands

Growth anomalies

Discoloration

Tissue loss

Maynard et al 2015 Nature Climate Change

Increasing disease risk under future climate scenarios

Coral disease may be as likely to cause coral mortality as bleaching in the coming decades

Fore-C: Goal & Objectives

Goal: Increase the resolution and predictive power of forecasts of coral disease outbreaks across the tropical Pacific

Objective 1: High-resolution satellite products from more regions and diseases

Objective 2: Develop short-term temperature forecasts

Objective 3: Develop satellite-derived water quality indices as coral disease predictors

Objective 4: Improve understanding of pre-visible coral stress response

Fore-C

Mark Eakin

Jamie Caldwell

Scott Heron

Gang Liu

Erick Geiger

Austin Greene

Jacqueline de la Cour Bernardo Vargas-Angel

Bill Leggat

Summer Hot Snaps and Winter Conditions: Modelling White Syndrome Outbreaks on Great Barrier Reef Corals

Scott F. Heron^{1,2}*, Bette L. Willis³, William J. Skirving², C. Mark Eakin⁴, Cathie A. Page³, Ian R. Miller⁵

Heron et al. 2010

Montipora White Syndrome, Porites Growth Anomaly, Porites Tissue Loss

Coral disease in Hawai'i

Objective 1: High-resolution satellite products from more regions and diseases

- Updated satellite data products for SST at 5 km resolution
- Expansion to additional Pacific reef areas
- Expansion to additional coral diseases

Objective 2: Use short-term temperature forecasts to build disease risk projections

- Climate models predict SST for the coming months
- Forecast disease risk based on relationships between disease and temperature anomalies
- Check out Scott's posters presenting initial results for GBR and Hawaii

Objective 3: Develop satellite-derived water quality indices as coral disease predictors

2012-2017 Monthly Maximum $K_{c}(490)$ (m⁻¹)

- Water quality is an important predictor for some coral diseases
- Developing tools based on chl-a and diffuse attenuation (turbidity)

Objective 4: Improve understanding of previsible coral stress response

- Corals respond internally to stress before any visible signs are apparent
- Microbial and metabolomic profiling to understanding previsible impacts on corals

Metabolomic & Microbial Profiling

- Partners:
 - The Nature Conservancy
 - Division of Aquatic Resources
- West Maui
 - Coral health and water quality surveyed at 52 sites
 - 2 coral species at 20 sites
- Hawai'i
 - 12 sites
 - Porites lobata
 - Long-term water quality data
- Outbreak Response
 - Paired outbreak/nonoutbreak

Fore-C Team Meeting

JoLeah Lamb (Cornell University)
Bruce Monger (Cornell University)
Laurie Raymundo (U Guam)
Courtney Couch (U Hawaiʻi → NOAA Ecosys Sciences

Fore-C Focus Group

- >30 participants from The Nature Conservancy, Hawai'i DAR/DLNR, NOAA, Maui Ocean Center, US-FWS, PMNM, NPS, GBRMA
- Hawaiʻi, American Samoa, Guam, GBR

Fore-C

Mark Eakin

Jamie Caldwell

Scott Heron

Gang Liu

Erick Geiger

Austin Greene

Jacqueline de la Cour Bernardo Vargas-Angel

Bill Leggat

